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Abstract: In this paper we describe a technique for monitoring and checking temporal logic 
assertions augmented with real-time and time-series constraints, or Metric Temporal Logic 
Series (MTLS). The method is based on Remote Execution and Monitoring (REM) of temporal 
logic assertions. We describe the syntax and semantics of MTLS and a monitoring technique 
based on alternating finite automata that is efficient for a large set of frequently used formulae 
and is also an on-line technique. We investigate the run-time data-structure size for several 
interesting assertions taken from the Kansas State specification patterns. 
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1 Introduction  

Temporal Logic is a special branch of modal logic that investigates the notion of time 
and order. It was Pnueli [17] who first suggested using Linear-Time Temporal Logic 
(PLTL) for reasoning about concurrent programs. Since then, several researchers have 
used PLTL to state and measure the correctness of concurrent programs, protocols, 
and hardware (e.g., [11, 16]). 

PLTL is an extension of propositional logic in which, in addition to the well-
known propositional logic operators, there are four future-time operators (◊-
Eventually, -Always, U-Until, Ο-Next) and four dual-past time operators. A well 
known library known as the Kansas State University (KSU) specification patterns 
library, contains patterns of PLTL specifications that encode the knowledge of experts 
in finite state verification [2]. 

Chang, Pnueli, and Manna suggested Metric Temporal Logic (MTL) as a vehicle 
for verifying real time systems [3]. MTL extends PLTL by supporting the 
specification of relative-time and real-time constraints. Using MTL, all four PLTL 
future-time operators can be characterized by relative-time and real-time constraints 
specifying the duration of the temporal operator.  

In [1], Alur and Henzinger classify a variety of real-time logics according to their 
complexity and expressiveness. In particular, they investigate the expressive power of 
MTL and Timed Temporal Logic (TPTL) in which a freeze quantifier is used for 
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freezing and capturing particular real-time values for later use within the TPTL 
formula. 

Time series constraints enable the specification of temporal properties of 
sequences of propositions with constraints on how data values change over time. They 
also enable the simulation and monitoring of such properties as stability, 
monotonicity, temporal average and sum values, and temporal min/max [6]. Note that 
time-series constraints differ from the freeze operator of [1] in that they capture and 
freeze data values, not time. 

Remote Execution and Monitoring (REM) is a class of methods for tracking the 
temporal behavior of an underlying application. REM methods range from simple 
print-statement logging methods to run-time tracking of complete formal 
requirements (written, e.g., in PLTL/MTL) for verification purposes. Recently, NASA 
used REM to verify the flight code for its Deep Impact project [8]. In addition, the 
U.S. Missile Defense Agency (MDA) is currently applying REM to verify its Ballistic 
Missile Defense System [9]. Both applications use the REM method described here. 

In this paper we are particularly interested in on-line REM methods, where 
temporal rules are evaluated without storing an ever-growing and potentially 
unbounded history trace. In particular, we prove that for a large subset of temporal 
logic, the method requires only a polynomially sized implementation. In addition, we 
show the actual expected implementation size for several interesting assertions taken 
from the Kansas State specification patterns. 

Recently, Thati and Rosu [18] have proven lower bounds for on-line REM of 
MTL assertions, showing that monitoring time grows exponentially to the size of the 
assertion being monitored when real-time constraint bounds are small, and double 
exponentially to the size of the assertion being monitored in the general case. Note 
that these lower bound refer to the amount of computation required during every cycle 
of a REM process. 

Also, whereas Sistla and Wolfson investigated temporal rule checking in 
databases [20], our approach differs in the following two aspects: First, our 
implementation algorithm is based on executing and efficiently managing and 
reducing alternating finite automata (AFA) representations of temporal rules. Second, 
our AFA-based and/or tree reduction techniques enable on-line computations, 
whereas their algorithm is not on-line in that their requirement graph data structure 
grows with time. It should be noted, however, that in [19], Sistla and Wolfson provide 
an on-line (incremental) variant of their algorithm by limiting themselves to past-time 
temporal logic. 

In [14] Kovacs, et-al, describe the use of PLTL formulas as runtime assertions in 
a parallel debugging environment. Their approach, like ours, distinguishes between 
transient evaluations of temporal assertions and “final” evaluations that cannot change 
in the future. They do not however support time-series within PLTL nor do they 
describe the details of their monitoring technique. 

In [21] Tuzhilin describes Templar, a high-level simulation language based on 
temporal logic. The suggested interpreter is not on-line and relies on stored historical 
data. Also, Templar does not support MTL or time-series constraints. 

In [12] Hevelund and Rosu describe the Java Path Explorer (JPaX), an on-line 
implementation method for PLTL based on a rewriting system using PLTL recurrence 
equations. The primary disadvantage of JPaX compared with the technique we 
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suggest in this paper is its inability to monitor MTL assertions or time-series 
constraints [6]. In addition, this paper provides analysis, growth metrics, and growth 
reduction techniques that have not been provided for in alternative techniques. 

Tableau methods for PLTL (e.g., [22]), and for TPTL [1], are in effect on-line 
methods: They convert PLTL into exponential-sized non-deterministic finite automata 
(NFA), which are then executable and usable as a REM engine. Our method, 
however, uses AFA instead of NFA, yielding substantially smaller implementations. 
More importantly, the AFA method lends itself to the implementation of the sorts of 
PLTL extensions described here, such as real-time constraints (MTL) and time-series 
constraints, as well as counting operators [4]. 

Extended regular expressions are those that, as their name suggests, extend 
regular expressions with negation and conjunction. They have a direct automata 
theoretical representation using AFA, analogous to the way that non-deterministic 
automata represent standard regular expressions. For example, Perl and recent 
versions of Java support extended regular expressions in an off-line manner, in which 
the entire input string is stored in memory (e.g. as a string variable) and then checked 
for membership in a formal language defined by a given extended regular expression. 
Indeed, [15] presents a polynomial time off-line membership algorithm for extended 
regular expressions. 

The DBRover and Temporal Rover REM tools described in [4-10] use the AFA-
based implementation technique described in this paper. In addition to on-line 
processing they are [redundant] low-impact [7] in that they require only limited 
exposure of potentially confidential information on the monitored system, a useful 
property when monitoring financial or security-based systems. 

The rest of this paper is organized in this way: Section 2 describes the syntax and 
finite sequence semantics for MTLS. Sections 3 and 4 outline our AFA-based REM 
method for PLTL. Sections 5 and 6 provide analysis and metrics for the growth of the 
data structures used by the suggested REM method, and Section 7 examines these 
growth functions for several specifications taken from the KSU specification pattern 
library. Section 8 describes an adaptation of the REM method for monitoring MTLS 
and past-time operators. 

2 MTL with Time Series Constraints (MTLS): Syntax and 
Semantics 

Conventionally, the semantics of PLTL and MTL are defined over infinite sequences. 
Run-time monitoring is, however, by definition a finite process. We therefore define 
MTLS semantics for finite sequences. We do so by using an automata-like approach, 
in which an MTLS formula evaluates (accepts or rejects) an input string, σ, over some 
alphabet, Σ. In addition, we extend the definition of a sequence, σ=a1 …an, to be a 
sequence of pairs from Σ×T , i.e. ∀i, 0≤i≤n, ai=(bi, ti), where bi∈Σ and ti is an integer 
that represents the arrival time of bi at the input. We denote the projections ai|Σ=bi and 
ai|T=ti. Clearly, also, i ≤ j → ti ≤ tj.  

Because input sequences are finite, we introduce the concept of the finality of an 
evaluation, which indicates whether the Boolean evaluation result has the potential of 
changing when using an input string, σ', that is an extension of σ. For example, p =  
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(x>0) accepts a sequence σ of 100 time stamps with x>0 in each. The final value for 
this evaluation is false because x≤0 might occur in an extended sequence σ' that 
extends σ beyond time t=100. However, if x≤0 at some time t<100, then p is rejected 
and the final value is true because this rejection is unchangeable in the future. That is 
to say, every extension of the input sequence will not change the fact that  (x>0) has 
been violated. 

Let P be a set of Boolean propositions, V a set of variables called frozen 
variables, and V’={v’/v∈V} a set of variables called current variables. Let Q be a set 
of time-series propositions defined as Boolean relations over arithmetic expressions 
of numeric constants and variables from V∪V’. For example, using V={v1,v2,v3}, 
v1+v2'*0.9<2+v3 is a legal time-series proposition. The formulae φ of MTLS are 
defined inductively as follows: 
φ := p | false | φ1 ∨ φ2 | ¬φ | Οφ | ◊I $x1,…,xm$ φ | φ1 UI $x1,…,xm$ φ2 
for p∈ P∪Q and ∀i, 0≤i≤m, xi∈V. As in [1], the subscript I is an interval of � whose 
end points are natural number constants. Intervals may be open, half open, or closed, 
as well as empty, bounded, or unbounded. We use standard pseudo-arithmetic 
expressions to describe such intervals. For example, ≤ c1 and > c2 stand for the closed 
interval [0,c1] and the open interval (c2, ∝), respectively. An interval (c, ∝) or [c, ∝) is 
called right unbounded. We use the standard abbreviations: true = ¬false, φ1 ∧ φ2 = 
¬(¬φ1 ∨ ¬φ2), and I $x1,…,xm$ φ = ¬◊I $x1,…,xm$ ¬φ. For readability reasons we 
abbreviate $x1,…,xm$ as xm throughout the remainder of this paper. 

An example of an MTLS formula is ◊[10,500]$x$ (x>30 ∧ ≤20 x'>1.5*x), which 
states that sometime between 10 and 500 real-time units in the future it should hold 
that (i) the value of x is a number greater than 30, e.g. 35, and (ii) the value of x in 
every cycle within the 20 consecutive real-time units is greater than 1.5*35. Note how 
x, a frozen variable, denotes the initial value of x within a sub-sequence of cycles 
while x', a current variable, denotes values of the same variable x in the following 
cycles. Note also that the sub-formula ≤20 x'>1.5*x has no frozen variables of its 
own. 

Frozen and current variables are similar to free and bound instances of variables 
found in other languages and tools (e.g. [1]). Our definitions differ somewhat from 
the conventional definitions in the following respect. Frozen and current variables 
such as x and x' in the above example are defined under a particular temporal operator 
(◊ in the above example). The frozen variable x is frozen in the initial cycle of the 
sub-sequence for that operator (the first time between time 10 and 500 in which x is 
greater than 30) whereas the current variable x' refers to the value of x in following 
cycles. Note that the motivation for using the same variable name for frozen and 
current variables is that from a programmers standpoint they look like the same 
programming language variable x being observed in different snapshots. 

We consider MTLS formulae as acceptors of sequences of an alphabet Σ whose 
letters are as follows. Each letter of Σ is a collection of functions, each being one of 
three types: a:P->Boolean, a:V→�, and a: V’→�. We distinguish between these 
functions using their argument, one takes a proposition as an argument while other 
two take a variable as their argument. As in [19], the semantics of MTLS is defined 
with respect to a time-stamped sequence, i.e., finite input sequence σ= a0…an, where a 
letter ai is interpreted as representing the following readings for the ith cycle: (i) truth 
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assignments for Boolean propositions in P, and (ii) integer values of variables in V 
such as ai(v1)=8 and ai(v2)=10. 

Let q be an expression in Q. We define the time series substitution of a variable in 
q with an integer value n, denoted q<v←n>, as the expression q where all instances of 
v are substituted with n. Because we have two types of variables, frozen and current, 
we define a similar substitution q<v←n1, v’←n2> in which both types of variables are 
substituted. For an input letter a∈Σ, q←$xm$a is the expression q with all occurrences 
of xi replaced by a(xi). Likewise, q←$xm$<a,b> is the expression q where ∀i, 1≤ i≤ m, 
all instances of a frozen variables xi are substituted with a(xi), and all instances of a 
current variable xi’ are substituted with b(xi’). In the following semantics we use the 
substitution q←$xm$<ai,aj> (where i≤j)  in the following way: ai and aj are letters in Σ, 
where ai is a reading of the input tape used for setting values of frozen variables, and 
aj is a reading of a subsequent letter used for setting current variables. 

For the purpose of creating simple semantics, we impose the following syntactic 
constrains: a variable x in the variable list ($xm$) of a formula cannot appear in the 
variable list of any sub-formula. For example, ◊[10,500]$x,y$ (x>30 ∧ ≤20 $y$ 
x'+y’>1.5*x+y) is illegal. 

The finite-sequence semantics for an MTLS formula p is defined recursively with 
a standard evaluation (accept or reject) value, where p rejects a sequence of elements 
of Σ×T, σ=a1 …an, if it does not accept it. We denote the acceptance relation as σ|=p 
for p accepting σ, and as σ|≠p for p rejecting σ. 

• For a formula p∈ P, σ|= p iff a0|Σ(p) contains p. 
• σ|=p ∨ q iff σ|=p or σ|=q.  
• σ|=¬p iff σ|≠q.  

• σ|=○ρ iff a1…an |=p.  
• σ|=◊I$xm$p iff ∃i, 0≤ i≤ n, such that: (i) ai…an |= p←$xm$<a0|Σ, ai|Σ>  and (ii) 

ai|T∈I. 

• σ|=ρUI$xm$q iff one or both of the following conditions hold: 
1. ∃j, 0≤ j≤ n, such that aj…an|=q←$xm$<a0|Σ,aj|Σ>, aj|T∈I, and ∀i, 0≤i<j, 

ai…an|=p←<a0|Σ, ai|Σ >.  
2. I is right unbounded and ∀i, 0≤i≤n, ai|T∈I implies that 

ai…an|=p←$xm$<a0|Σ, ai|Σ>. 

In addition, we define the Boolean finality qualifier, where the final value of an 
MTLS formula p, given an input sequence σ, is denoted f(p,σ). When f(p,σ) is true it 
means that the decision of whether p accepts σ is immutable. 

• For a formula p∈ P,  f(p,σ)=true. 
• f(p ∨ q)=true if at least one of the following conditions holds: (i) σ|=p and 

f(p,σ)=true; (ii) σ|=q and f(q,σ)=true; or (iii) σ|≠p and f(p,σ)=true and σ|≠q, 
and f(q,σ)=true. 

• f(¬p, σ) = f (p,σ). 

• f(○ρ, σ) = f(p,σ) iff |σ|>1. 
• f(◊I$xm$p, σ) is true if ∃i, 0≤ i≤ n, such that: ai…an |= p←$xm$<a0|Σ, ai|Σ>, 

f(p←$xm$<a0|Σ, ai|Σ>, ai…an), and ai|T∈I. Stated informally, f(◊I$xm$p, σ) is 
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true if p with substituted variables is true in a final way sometime in the 
future. 
f(◊I$xm$p, σ) is also true if ∀i, 0≤ i≤ n, ai|T∈I → ai…an|≠ p←$xm$<a0|Σ, ai|Σ> 
and f(p←$xm$<a0|Σ, ai|Σ>, ai…an). Otherwise f(◊I$xm$p, σ) is false. Stated 
informally, f(◊I$xm$p, σ) is true if p with substituted variables is false in a 
final way always in the future. 

• f(ρUI$xm$q, σ) is true if ∃j, 0≤ j≤ n, such that (i) aj…an|=q←<a0|Σ,aj|Σ>, 
f(p←<a0|Σ, aj|Σ>, aj…an), aj|T∈I, and (ii)  ai…an|=p←$xm$<a0|Σ, ai|Σ > and 
f(p←$xm$<a0|Σ, ai|Σ>, ai…an). Stated informally, f(ρUI$xm$q, σ) is true if q 
(with substituted variables) is true in a final way sometime in the future and 
all instances of p (with substituted variables) up to that point in time are true 
in a final way. 
f(ρUI$xm$q, σ) is also true if I is right unbounded and ∀i, 0≤i≤n, ai|T∈I 
implies that ai…an|=p←$xm$<a0|Σ, ai|Σ> and f(p←$xm$<a0|Σ, ai|Σ>, ai…an). 

f(ρUI$xm$q, σ) is otherwise false. 

For practical implementation reasons beyond the scope of this paper our tools use 
the following relaxed finality definition for a formula p ∨ q: f(p∨q,σ)= f(p,σ)∧f(q,σ). 
This relaxation induces a final value definition that is not complete, i.e., there can 
exist a PLTL formula and a sequence σ such that f(p, σ) is true according to the 
formal definition but false according to the relaxed definition.   

3 From Temporal Logic to AFA  

An AFA is a finite automaton with two types of states, and-states and or-states. 
Whereas the computation of a deterministic or non-deterministic finite automaton is a 
sequence of states, a computation of an AFA is represented as a tree of and-or states. 
A trace is a sub-tree of the computation and-or tree such that every child of an and-
state is in the trace and some child of an or-state is in the trace. A trace is accepting if 
all its leaves are final states. An AFA accepts a sequence, σ, if an accepting-trace for 
σ exists.  

In this paper we consider AFA augmented with zero-delay transitions similar to 
ε-transitions of [13], i.e., transitions that are traversed without reading a symbol from 
the input tape. Unlike ε-transitions, however, zero-delay transitions must be traversed, 
i.e., they do not imply a non-deterministic possibility of being either traversed or not. 

The temporal logic monitoring method described in this paper is based on 
executing equivalent AFA representations. A graph-oriented AFA-based technique 
was selected over string-based logic manipulation of recursive Boolean logic 
equations because of its visual appeal, and because the AFA method lends itself to 
extensions of PLTL like real-time constraints and time-series constraints.  

Our (recursive) PLTL-to-AFA conversion method is based on the well-known 
recurrence equations: 

• p = p ∧ ○ p 

• ◊p = p ∨ ○◊p 

• p U q = q ∨ (p ∧ ○(p U q)) 
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Fig. 1 contains the recursive AFA construction procedure for PLTL based on 
these recurrence equations, and Fig. 2 contains two examples of PLTL to AFA 
translation. We use the following notation: Transitions labeled Σ are those that are 
enabled by all letters of the alphabet, and zero-delay transitions are visually depicted 
using dashed lines. Also, by convention, we consider the top-most state as the initial 
state. For clarity, AFA states are sometimes annotated with their PLTL logic symbols, 
using bubble callouts, as in Figs. 1c, 1d, and 1g. We refer to such a symbol as the type 
of the node. For example, the initial state in the AFA in Fig. 2b is an and-node whose 
type is . Note that in Fig. 1 we assume that PLTL formulae contain no negations 
because, using conventional logic conversions and temporal logic conversions, 
negations can be pushed down to the proposition level.  

4 Runtime Monitoring using AFA 

This section describes an AFA based-technique for run-time monitoring of PLTL and 
MTLS. 

4.1 Runtime Monitoring of PLTL using AFA 

Given an PLTL formula p and its representative AFA, our REM method constructs 
and maintains an and/or promise tree, abbreviated as p-tree, which is an evolving 
AFA computation tree. The p-tree is the only composite state that is preserved 
between cycles by the REM method. No history trace of input information is stored. 
The p-tree performs the on-line evaluation of the logical value of p at any given time 
t. The p-tree then dynamically reconfigures itself based on the current on-line inputs, 
thereby generating a new p-tree that represents a Boolean function to be evaluated at 
time t+1 (the promise). Fig. 3 illustrates the process for the AFA in Fig. 2b. We use a 
diagrammatic notation in which, for a node whose PLTL-type is N (e.g. a  node), its 
recursive copy—namely a child node with the same PLTL type N—is the right hand-
side child. For example, the  root node of the AFA in Fig. 2b, whose corresponding 
p-tree is illustrated in Fig. 3a, has a recursive copy on its right-hand side child. Both  
nodes in the p-tree in Fig. 3a implement a  node in the AFA: The first p-tree realizes 
the AFA node during the first visitation, and the second p-tree realizes the  node as it 
is revisited after traversing the loop transition. 

The p-tree is used for two purposes: One is for the evaluation of the acceptance 
and final values every cycle; the other is as a data structure that preserves the state of 
the evaluation for future cycles.  

During the ith cycle of performing REM of an PLTL formula p, i ≥0, the p-tree is 
evaluated resulting in Boolean values for σ|=p (acceptance) and f(p,σ) (finality), 
where σ= ai…an. During p-tree evaluation, acceptance and final values are assigned in 
a bottom-up manner, where leaves hold the following values: 

• A leaf holding a Boolean T(F) value, such as in Fig. 3b, has a true (false) 
acceptance value and a true final value. 

• An unexpanded leaf (e.g. the unexpanded U1 leaf in Fig. 3a) has an 
acceptance value that is neutral with respect to its least common Boolean 
parent. For example, in Fig. 3a, the parent of the U1 leaf is an and node, so 

488 Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...



the acceptance value of the U1 node is true, whereas if the parent were an or 
node the leaf’s acceptance value would be false. The final value of an 
unexpanded leaf is false, representing the fact that the node has yet to be 
expanded. 

Internal p-tree nodes are assigned acceptance values as a straightforward Boolean 
function of the acceptance values of their children. An internal node is assigned a true 
final value if and only if all its children have been assigned a true final value. As 
stated earlier, we use a relaxed final value. Consequently the final value is 
incomplete; that is, an assigned final value might be false when, in fact, according to 
the formal semantics, it should be true. 

Because a node with a true final value has an acceptance value that cannot change 
in the future, then the REM method replaces this node with a singleton T or F node 
representing the node’s acceptance value. 

After evaluation, the p-tree is modified to preserve a promise for the next cycle as 
follows: In Fig. 3, the original p-tree in Fig. 3a contains the computation that needs to 
be performed in the first cycle (time t=0). Note how the U1 leaf node is unexpanded. 
It will be expanded in the next cycle (Fig 3b) once the Σ transition is traversed, and 
therefore represents a promise for a computation in the future. Similarly, there exists 
an unexpanded  node (a recursive copy of the root), which represents the loop in the 
original AFA in Fig. 2b. It will likewise be expanded in cycle 2 (Fig. 3b) once the Σ 
transition is traversed. Recall that solid line transitions consume one cycle of 
computation (i.e., they represent delays and conditions), whereas dashed transitions 
are traversed instantly (i.e., in the current cycle) and unconditionally. The p-tree in 
Fig. 3b represents the computation that needs to be performed in the second cycle 
(time t=1), assuming p was true at time t=0. Note, as well, the following: (i) instead of 
a solid transition labeled p in Fig. 3a, representing the fact that p needs to be 
evaluated in the next cycle, Fig. 3b contains the T singleton node, representing the 
fact that p has been evaluated already and found to be true; and (ii) transitions that 
have already been traversed are replaced with ε-transitions (dashed lines), 
representing conditions that have already been evaluated. 

4.2 Runtime Monitoring of MTLS using AFA 

A beneficial property of our REM method is its direct realization of the original 
temporal logic formula using and-or trees that are homomorphic to the original AFA, 
i.e., to the original PLTL formula. This property is helpful when implementing 
extensions and constraints for PLTL.  

MTL includes real-time constraints that are associated with temporal operators. 
For example ψ = (p => ◊<5 q), specifies that whenever p is true, then within five 
real-time units q must be true. Let N be the AFA node for the ◊ operator. To 
implement the real-time constraint, the following steps are taken: 

1. Every object that realizes a p-tree for N is provided with a real-time 
counter that is updated from a designated real-time clock. which 
measures true real-time using native operating system calls, clock 
cycles, or simulated time. The real-time counter for a p-tree is initialized 
when the p-tree is created.  
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2. As long as the real-time counter has not crossed the constraint’s lower 
bound (0, in our example), the p-tree’s acceptance value is false (true for 
a  node), and the final value is false. 

3. Once the real-time counter has entered the range between the lower and 
upper bounds of the constraint, normal evaluation of the acceptance and 
final values begins. 

4. If the real-time counter exceeds the constraint’s upper bound, the final 
value for the p-tree is assigned true. 

The time-series-constraint implementation technique also uses p-trees to store 
information. Consider, for example $x$(p=> <5 x’>=2x), which states that whenever 
p is true at some time t, then for every cycle between t and t+4 the value of x should 
be at least twice its value at time t. Let N be the AFA node for the outer  operator. 
Every p-tree for N is assigned storage space for x. This storage space is assigned the 
value of x at the time of construction of a p-tree for N. This value, as well as current 
values of x (referred to as x’), are then used in the expression x’>=2x. 

The suggested REM method supports past time operators as follows: Consider, 

for example, the formula ○○[-]p. A special p-tree is created for every sub-formula 
headed by a past time operator, e.g., for [-]p. Rather than looking backward in time 
while evaluating [-]p, the REM method evaluates p as of time 0, but it does not use 

the results of this evaluation until the delays introduced by the ○operators have 
elapsed. At this point, the p p-tree is assigned a true final value and is used under the 
future time nodes as a basic proposition. 

5 p-tree Growth Control and Analysis 

Clearly, the method as shown thus far induces p-trees whose size increases over time, 
and are therefore not on-line. To achieve on-line capabilities, our REM method 
utilizes collapse optimization operations in which sub p-trees are replaced by smaller, 
logically equivalent, p-trees. Collapse operations are designed for all recursive future 
time temporal operators ( , ◊, and U). They identify and eliminate repetitive and 
redundant substructures in p-trees by identifying patterns of isomorphic sub-p-trees. 
Collapse operations are performed in a bottom-up manner so that collapsing lower 
level substructures increases the potential for identifying repetitions in higher-level 
substructures.  

In this paper, we identify three classes of collapse operations. Some collapse 
operations are general; others are helpful for restricted types of PLTL formula, 
designated two-color and discussed in Section 6. The three classes are, simple, 
extended and special collapse operations. These classes are not necessarily mutually 
exclusive: a given temporal formula might have restricted sub-formulae and can 
therefore benefit from special collapse operations whereas other parts of the formula 
induce less efficient sub p-trees. 

Fig. 4 illustrates simple collapse operations performed during REM of the PLTL 
formula (p=>◊q), i.e.,  (¬p∨◊q), which is identical, except for the basic 
propositions, to the formula in Fig. 2a. As a result of the collapse operations, the p-
tree in Fig. 4d is identical to the p-tree in Fig. 4b, the p-tree one cycle earlier. Hence, 
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in this example, the p-tree did not actually grow in size from cycle 1 to cycle 2. In the 
following sections we will analyze the growth of p-trees for various types of PLTL 
formulae. 

Fig. 5 illustrates p-tree collapse patterns used for the ◊, , and U operators, where 
the collapse patterns for the  operator are analogous to those of the ◊ operator. Not 
illustrated in Fig. 5a are trivial collapse operations for ◊ ( ) nodes when either A or 
A’ is final, i.e., F or T singletons. Fig. 5a illustrates simple collapse operations where 
the two isomorphic sub-trees represent first-degree cousins; Fig. 5b illustrates 
extended collapse operation for ◊ ( ) nodes, i.e., collapse operations where 
isomorphic sub-trees might be more remote than first-degree cousins. Extended 
collapse operations exist for U-based p-trees as well, namely, when referring to Fig. 
5c, the pair of p-trees A’, B’ is not necessarily a first-degree cousin of the pair A, B, 
but is possibly an nth-degree cousin. For example, the logic representation of an 
instance of an extended collapse operation for a U node using n=3 is: 
q ∨ (p ∧ (r ∨ (s ∧ (q ∨ (p ∧ promise))))) =  q ∨ (p ∧ (r ∨ (s ∧ promise))) 

Collapse patterns for Boolean nodes exist only for a restricted MTLS, as 
described in Section 5. 

Note that collapse operations do not affect the acceptance and final values of the 
p-tree. Consider for example p-tree acceptance values: Let a and b be the Boolean 
acceptance values of the sub-trees labeled A and B, respectively; clearly 
a∨(a∨b)=a∨b. Likewise, the final value is not affected by the removal of a redundant 
sub-tree. 

6 Growth Analysis  

We will use the following three restricted forms of MTLS to analyze the growth of 
the suggested REM method: (i) MTLS restricted to basic propositions and the ◊ and  
operators, designated vanilla MTLS; (ii) vanilla MTLS extended with Boolean 
operators, for which Boolean operators, when consecutively nested, are only 
permitted to be nested in a non-alternating manner, designated two-color MTLS; and 
(iii) MTLS with formulae in the form of pUq, where p and q are two-color formulae, 
designated three-color MTLS. Hence, for example, ◊p is in vanilla MTLS, whereas 

(¬p∨◊q) is in two-color MTLS, as is  ◊ (¬p∨◊(q1∧q2 )). In contrast, ((q1∧q2)∨◊q) 

is not in two-color MTLS. Later, we will relax our definitions to enable ○ nodes 
anywhere within vanilla and two-color MTLS formulae. 

In this section we consider two classes of p-trees: live and final. A final p-tree is a 
singleton, or a p-tree that is equivalent to one, i.e., it contains only propositions and 
Boolean nodes. A live tree is a non-final tree. 

6.1 Growth Analysis for REM of Vanilla MTLS 

It is well known for linear time temporal logic that p= p and ◊◊p=◊p. Therefore, a 
vanilla MTLS formula either has no temporal operators or has alternating  and ◊ 
operators, as in ◊p and ◊ ◊p. We will show that after applying collapse operations, 
p-trees for vanilla MTLS formulae either are always final or assume one possible tree 
shape. 
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Lemma 1. During REM with simple collapse operations, p-trees for vanilla MTLS 
formulae exist in one of two forms: live and final. 
Proof outline: Fig. 6a and 6b illustrate all possible p-trees for ◊p and p vanilla 
MTLS formula, respectively, after a single execution cycle. Consider Fig. 6a for 
example: If p is false, the left p-tree results, whereas if p is true, the right p-tree 
results. The claim holds for these p-trees: the unique live p-tree for ◊p ( p) is of size 
3, while the other p-tree for ◊p ( p) is a singleton, final (T or F) state. If the p-tree is 
live, then after one additional cycle the recursive copy assumes a form that is again 
one of the two forms in Fig. 6a (6b). If this form is a singleton the entire p-tree for ◊p 
( p) persists as a singleton.  
Consider now a deeper vanilla- MTLS formula such as ◊p. As illustrated in Fig. 6, 
let N denote the root node of the p-tree, and let left-N be the left-hand side child of N, 
i.e., the non-recursive child. Note that left-N is a p-tree for ◊p, i.e., we have already 
shown that it is either the F singleton or assumes one possible form as a live tree. 
Both possibilities are illustrated in Fig. 6b, while Fig. 6c illustrates the application of 
simple collapse operations, resulting in a single live p-tree for ◊p in both cases. 

A full proof for this claim involves an inductive claim over the depth of the 
vanilla MTLS formula, while utilizing the fact that the  and ◊ operators within the 
formula must be ordered in an alternating manner. 

6.2 Growth Results for REM of Two-color and Three-Color MTLS 

In this section, we provide the results used for the development of growth metrics of 
two-color and three-color MTLS, as described in the next section.  

Along the lines of Lemma 1, Lemma 3 claims that during REM of two-color 
PLTL, the number of different p-trees is limited. We first state that when a p-tree A1 
for a vanilla formula p becomes final then so must all p-trees for p that are created 
after A1. 
Lemma 2. Let A1 and A2 be p-trees for a two-color (sub)formula p that are created 
during REM with simple collapse operations. If A1 is live during the period [t1,t2] 
and A2 is created within that period, then A2 must be live at time t2. 

Using Lemma 3 below, our REM method limits the growth of p-trees for two-
color PLTL formulae. To this end, we define new collapse operations, designated 
special collapse operations. Special collapse operations, illustrated in Fig. 7, perform 
optimization in the form of (C ∧ T) ∨ (C ∧ D) ∨ promise = C ∨ promise, where the 
inner logical or is the ◊ nodes’ logical or, and promise represents any future extension 
of the currently un-extended leaf ◊ node. Similarly, for a logical Or  B node (B is 
illustrated in Fig. 7) under a ◊ root, the collapse pattern represents the equation (C ∨ 
F) ∨ (C ∨ D) ∨ promise = (C ∨ D) ∨ promise. Analogous collapse patterns exist under 

 nodes. 

Lemma 3. During REM with simple, extended, and special collapse operations, p-
trees for two-color PLTL formulae exist in one of three forms: one live and two final.  
Also, three-color PLTL formulae are in the form of pUq, where p and q are in two-
color PLTL.  

Using Lemma 4, below, our REM method limits the growth of p-trees for three-color 
PLTL formulae.  
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Lemma 4. During REM with simple, extended, and special collapse operations, live 
p-trees for three-color PLTL formulae ψ=pUq must be either:  

1. Of the form in Fig. 8a, where ∀i, 1≤i≤n, Pi is isomorphic to Pi+1 and n ≤ 
max(2,d), where d is the syntactic nesting depth of q. 

2. Of the form in Fig. 8b or Fig. 8c. 

7 Growth Metrics 

Two metrics measure the growth of p-trees for an PLTL formula ψ during REM: 
1. size(ψ), an upper bound on the size of p-trees for ψ, and  
2. m(ψ), an upper bound on the number of possible distinct p-trees that 

exist for ψ. 
Let size2(ψ) and m2(ψ) denote the size(ψ) and m(ψ), respectively, for a two-color 
PLTL formula ψ. 

Table 1 contains recurrence equations for these metrics based on the lemmas 
stated earlier, as well as Lemma 5 below. When calculating the size of hybrid PLTL 
formula ψ, such as (p U (¬p∧ q)) U (¬p∨◊q), m2 and size2 are first computed for the 
two-color sub-formulae and are then used to compute size and m, respectively, for the 
whole of ψ. As suggested by Table 1, nesting of U operators is the primary reason for 
p-tree growth. In fact, size(ψ) is exponential in the nesting depth of U operators inside 
ψ as well as in the number of alternations of Boolean logic operators within ψ. 
However, nesting of U operators in PLTL is typically used in two primary ways: 

• Right-side nesting, as in ¬P U (P U (¬P U (P U (¬P U P)))). Right-side 
nesting can often be replaced with more readable and more efficient counting 
operators [4]. 

• Left-side nesting, as in (P → (¬R U (S ∧ ¬R))) U R. Growth for left-side 
nesting is often limited, as Lemma 5 suggests. 

Lemma 5. For a left nested formula ψ=ρUτ, (i) if τ is a propositional logic sub-
formula, then size(ψ) ≤ m(ρ)∗(size(ρ)+2) and m(ψ) ≤ m(ρ)!, and (ii) if τ is a vanilla 
PLTL sub-formula, then size(ψ) ≤ m(ρ)∗(size(ρ)+size(τ)) and m(ψ) ≤ m(ρ)!∗m(ρ). 
Proof. First, consider a propositional logic τ, i.e., the p-tree for τ is always a 
singleton. The Boolean logic representation of any live p-tree for ψ must be in the 
form e = F∨ (P1 ∧ (F∨ (P2 ∧ … (F ∨ (Pn∧ promise))), where Pi’s are logical 
representations of p-trees for ρ. There are at most m(ρ) distinct Pi’s. Hence, after at 
most m(ρ) levels, extended collapse is enabled and consequently: 
size(ψ)≤m(ρ)∗(size(ρ)+2) and m(ψ)≤m(ρ)!, representing all ordering possibilities for 
the P’s. Similarly, for a vanilla τ, e = Q1∨ (P1 ∧ (Q2∨ (P2 ∧ … (Qn ∨ (Pn∧ promise))), 
where Qi’s are Boolean logic representations of p-trees for τ. From Lemmas 2 and 3, 
it follows that ∃k, k>0, such that ∀j<k, Qj=F, and ∀j≥k. Also, Qj is isomorphic to Qk. 
(k=1 means all Qj’s are isomorphic to one other). Hence, after at most m(ρ) levels, 
extended collapse is enabled and consequently: size(ψ)≤m(ρ)∗(size(ρ)+size(τ)) and 
m(ψ)≤m(ρ)!∗m(ρ), where m(ρ)! represents all possible enumerations of the Pj’s and 
an additional m(ρ) factor counts all possible k’s.  
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In a three-color PLTL formula, ψ=ρUτ, when both ρ and τ are propositional, as 
in ψ = (¬R U (S ∧ ¬R)), a p-tree for ψ is either final (T or F singletons) or assumes 
one possible live form, which is the initial live form for ψ. Hence, for the example 
above, size(ψ)=7 and m(ψ)=3. For similar reasons size(¬(S ∧ (¬R) ∧ Ο(¬R U (T ∧ 
¬R))))=13 and m(¬(S ∧ (¬R) ∧ Ο(¬R U (T ∧ ¬R))))=3. Also, a formula like ((Q ∧ 
¬R ∧ ◊R) → (¬P U R)) enjoys properties of two-color PLTL, such as Lemmas 2 and 
3, because, as in the two-color PLTL case, the sub-formula (¬PUR) has only one live 
form 
 

PLTL Formula Recurrence Reasoning  
ψ is ◊ρ or ρ size(ψ)≤m(ρ)∗size(ρ) Growth until collapse is 

enabled 
ψ is ◊ρ or ρ size2(ψ)≤size2(ρ) + 2 Lemma 3 
ψ is ◊ρ or ρ m(ψ)≤m(ρ)! Ordering m(ρ) objects 
ψ is ◊ρ or ρ m2(ψ)≤3 Lemma 3 
ψ is ρ U τ  size(ψ)≤m(ρ)2∗m(τ)2∗4 

∗size(ρ)∗size(τ) 
Growth until collapse is 
enabled 

ψ is ρ U τ m(ψ)≤(m(ρ)2∗m(τ)2)! Ordering m(ρ)2∗m(τ)2 

objects 
ψ is ρ U τ (two-
color ρ, τ) 

size2(ψ)≤size2(τ)∗ 
(size2(ρ)+size2(τ)) 

Lemma 4: growth until 
collapse is enabled 

ψ is ρ U τ (two-
color ρ, τ) 

m2(ψ)≤m2(ρ)∗m2(τ)∗ 
(size2(τ)+3) 

Cases III and V in the 
proof of Lemma 5, 
induce 
m2(ρ)∗m2(τ)∗size2(τ) 

ψ is ρ U τ 
(propositional τ) 

size(ψ)≤m(ρ)∗size(ρ) Lemma 5 

ψ is ρ U τ 
(propositional τ) 

m(ψ)≤m(ρ)! + 1 Lemma 5 

ψ is ρ U τ (vanilla 
τ) 

size(ψ)≤m(ρ)∗ 
(size(ρ)+size2(τ)) 

Lemma 5 

ψ is ρ U τ (vanilla 
τ) 

m(ψ)≤m(ρ)!∗m(ρ) Lemma 5 

ψ is ρ ∧ τ, ψ=ρ ∨ τ size(ψ)≤size(ρ)+ size(τ) + 1  
ψ is ρ ∧ τ, ψ=ρ ∨ τ size2(ψ)≤size2(ρ)+size2(τ)+ 1  
ψ is ρ ∧ τ, ψ=ρ ∨ τ m(ψ)≤(m(ρ)-1)∗(m(τ)-1)+1 Cartesian product 
ψ is ρ ∧ τ, ψ=ρ ∨ τ m2(ψ)≤3 Lemma 3 
ψ is basic 
proposition 

size(ψ)≤1, size2(ψ)≤1 A final node 

ψ is basic 
proposition 

m(ψ)≤2, m2(ψ)≤2 T or F nodes 

 
Table 1: Growth Metrics 

 

494 Drusinsky D.: On-line Monitoring of Metric Temporal Logic ...



As for the PLTL next (Ο) operator, it introduces transient delays and therefore 
does not affect the analysis performed so far, other than contributing a fixed number 
of additional states to the size and size2 metrics. Moreover, Ο operators can also be 
expressed in MTL using ◊ and real-time constraints, where the real-time clock counts 
in cycles. For example, ΟΟρ is also expressible as ◊=2ρ. An MTL implementation 
is described in the next sub-section.  

While it is convenient for the purposes of analysis to push negations down to the 
proposition level, this is rarely done in practice. Rather, tools typically use a special 
negation node that inverts the acceptance value of the p-tree hanging under it. With 
inner level negation, the definition of two-color PLTL changes, so that negations are 
not permitted to exist directly between two logical and nodes or directly between two 
logical or nodes. 
 

KSU pattern ψ  English meaning Alternative pattern size(ψ) 
◊R → (¬P U R) Absence of P 

before R 
◊R → (¬P W R) 9 

 ((Q ∧ ¬R ∧ ◊R) → 
(¬P U R)) 

Absence of P 
after Q until R 

 ((Q ∧ ¬R ∧ ◊R) → 
(¬P W R)) 

15 

◊R → ((¬P ∧ ¬R) U (R 
∨ ((P ∧ ¬R) U (R ∨ 
((¬P ∧ ¬R) U (R ∨ ((P 
∧ ¬R) U 
  (R ∨ (¬P U R))))))))) 

2 transitions to P 
before R 

◊R → (¬P∧○P) 
RepeatedUntil≥2 R 

11 

 ((Q ∧ ¬R ∧ ◊R) → 
(¬P U (S ∨ R))) 

S precedes P 
between Q, R 

((Q∧¬R∧◊R∧◊S) 
→ (¬P W (S ∨ R))) 

21 

 ((Q ∧ ¬R ∧ ◊R) → (P 
→ (¬R U (S ∧ ¬R))) U 
R) 

Response S 
responds to P 
between Q and R 

 ((Q ∧ ¬R ∧ ◊R) → 
(P → (¬R U (S ∧ 
¬R))) W R) 

576 

(Q → (¬(S ∧ ¬R ∧ 

○(¬R U (T ∧ ¬R))) U 
(R ∨ P) ∨ (¬(S ∧ 

○◊T)))) 

P precedes (S, T) 
after Q until R 

Replace every αUβ 
with (αW β) ∧ ◊β 

1575 

 (Q ∧ ¬R → (¬R W 
(P∧¬R))) 

P exists between 
Q , R 

 13 

 (S ∧ ○◊T → ○(◊ (T 
∧ ◊P))) 

2-stimulus, 1-
response chain 

 17 

 (P → ◊(S ∧ ¬Z 

∧○(¬ZU T))) 
 

P triggers S 
followed by T 
without Z in the 
given scope 

 (P → ◊(S ∧ ¬Z ∧ 

○((¬ZWT) ∧ ◊T)) 

20 

 
 
 

Table 2: KSU Pattern Examples 
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8 Practical Examination using KSU Patterns 

The KSU specification patterns list is a repository of patterns that occur commonly in 
the specification of concurrent and reactive systems. Table 2 contains examples of 
KSU patterns along with corresponding size metric, i.e., the upper bound on the size 
of their p-trees. Note that KSU patterns refer to the weak-until as W, and strong until 
as U, where ρUτ = ρWτ ∧ ◊τ. 

As an example for the analysis shown in Table 2, consider the sixth entry. Using 
the equations of Table 1 we get: 

• size( ¬R W (T ∧ ¬R) ) = 7; size(◊(T ∧ ¬R))=5. 
• size( ¬R U (T ∧ ¬R) ) = size ( (¬R W (T ∧ ¬R)) ∧ ◊(T ∧ ¬R) ) = 13; 

size(¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) = 19; m(¬(S ∧ ¬R ∧ ○(¬R U (T ∧ 
¬R))) = 3.  

• size of ¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) W (R ∨ P) is therefore 3*19=57 and 

size of ¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P) is 63. 

• m of ¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) W (R ∨ P) is 3! = 6 and therefore m of 

¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P) = (6-1)*(3-1)+1 = 11. 

• size2 of (¬(S ∧ ○◊T)) is 9. 

• m2 of (¬(S ∧ ○◊T)) is 3. 

• size of (¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P) ∨ (¬(S ∧ ○◊T))) is 63 

+ 9 + 1 = 73, and size of Q → (¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P) ∨ 

(¬(S ∧ ○◊T))) is 75. 

• m of (¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P) ∨ (¬(S ∧ ○◊T))) = (11-

1)*(3-1)+1 = 21, and m of Q → (¬(S ∧ ¬R ∧ ○(¬R U (T ∧ ¬R))) U (R ∨ P) 

∨ (¬(S ∧ ○◊T))) is 21. 
• Therefore size(ψ) = 21*75 = 1575. 

The REM traversal of an average p-tree node can be implemented with 20 lines of C 
or Java code. Hence, if we assume five instructions per C line of code, and execution 
on a 1-GHz CPU, ψ formulae for rows 2 and 6 can be evaluated at a rate of 60,000 
and 6,000 cycles per second, respectively. Clearly, this estimation is for the largest 
possible p-tree for ψ, whereas for many inputs sequences, and for many cycles during 
each sequence, the actual size is possibly smaller. 

9 Conclusion 

We presented a technique for run-time monitoring of extended PLTL using dynamic 
and-or trees called p-trees based on AFA. This technique lends itself to extentions of 
PLTL in which sattelite information such as real-time and time-series measurements 
is stored in p-tree nodes. Further investigation into the suitablity of this technique to 
other extentions of PLTL is required. 
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We presented certain optimization techniques for capping the size of p-trees 
during on-line PLTL monitoring. Further investigation is required into more effixient 
optimization techniques. 
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